
The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

Exploring Runge-Kutta formulas with a computer algebra
system

Alasdair McAndrew
Alasdair.McAndrew@vu.edu.au

College of Engineering and Science
Victoria University

PO Box 14428, Melbourne 8001
Victoria, Australia

Abstract

Runge-Kutta formulas are some of the workhorses of numerical methods for solving differen-
tial equations. However, they are extremely difficult to generate; the algebra involved can be very
complicated indeed, and so their derivation is not included in undergraduate numerical texts. It
is now standard, following with work of Butcher in the 1960’s and 70’s, to use the combinatorial
theory of trees to simplify the algebra. More recently, however, several authors have shown that it
is quite feasible to use a computer algebra system to generate Runge-Kutta formulas. This article
shows that, using a computer-based approach, the formulas can be generated with very elemen-
tary means, using only the tools of elementary calculus and an open-source computer system to
handle the messy algebra. This approach brings a formerly difficult operation into the realm of
undergraduate mathematics.

1 Introduction
Unless you are teaching an advanced course in numerical analysis, you are not likely to spend much
time discussing Runge-Kutta methods for differential equations. You may derive some simple meth-
ods (Euler, Heun), and state without proof the standard fourth-order Runge-Kutta method. You will
almost certainly not derive this method, and for very good reason—the algebra involved is frighten-
ingly complicated. One text [9] takes at least four pages of dense algebra to produce the result.

As part of intense decades of research into these methods, Butcher [2, 1, 6] developed some highly
sophisticated techniques which showed how the equations which characterize these methods are not
random, as they at first appear, but are intimately related to the theory of “rooted trees”. A tree is
a graph (in the combinatorial sense) which is connected and contains no circuits, and rooted means
that one vertex is specified as the “root”. Although there had been some indications before Butcher
that rooted trees and Runge-Kutta conditions were connected, it was Butcher’s work that brought this
theory into fruition, and on which much of the current theory of Runge-Kutta conditions is based.

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

However, the use of a computer algebra system means it is now quite possible to look at Runge-
Kutta conditions anew: in particular to restrict the mathematics to elementary undergraduate calculus
and algebra. In particular, we can

1. Derive the equations which characterize Runge-Kutta methods.

2. Use the technique of Gröbner bases to simplify the equations (which are all polynomial).

3. Solve the equations, either in a completely general manner, or more particularly with specified
values for some of the variables.

Some of this has previously been done [4]. However, we provide a somewhat different approach:

1. We use only open-source software, so that anybody can experiment and verify our results.

2. We show how to determine Runge-Kutta methods for autonomous equations.

3. We show how to develop embedded formulas, which consist of two methods of different orders
and which share the same coefficients. These are the currently preferred methods.

We are concerned with finding the solution to the initial value problem

dy

dx
= f(x, y), y(x0) = y0

where the function f , and the initial values (x0, y0) are given. A numerical solution consists of a
sequence of ordered pairs (xk, yk), where yk is an approximation to the exact value y(xk). One way
is to use the Taylor expansion of y(x), using

y′ = f(x, y)

y′′ = fx + fy
dy

dx
= fx + fyf

y′′′ = (fx + fyf)x + (fx + fyf)y
dy

dx
= fxx + fyxf + fyfx + (fxy + fyyf + fyfy)f

= fxx + 2fxyf + fxfy + fyy(f)
2 + (fy)

2f

and then for a suitably small value of h, given (xk, yk) and with xk+1 = xk + h compute an approxi-
mation to yk+1 ≈ y(xk + h) to the exact value y(xk+1).

However, this requires the derivatives of f , which in many cases may have to be computed using
an approximation, thus introducing a new source of errors.

The insight of Runge1 and of Kutta2, was to realize that as the first derivative of y was equal to f ,
so other derivatives could be computed by judicious nesting.

For example, suppose we truncate the expansion of the Taylor series expansion of f after the first
derivative:

f(x+ h, y + k) ≈ f + hfx + kfy. (1)

1Carl David Tolmé Runge, 1856–1927
2Martin Wilhelm Kutta, 1867–1944

85

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

Also, truncate the Taylor series for y after the second derivative:

y(x+ h) ≈ y + hf +
h2

2
(fx + fyf). (2)

Note that the expression in parentheses on the right of (2) is very close to that on the right of (1),
excepting a term of f . But this can be inserted simply by writing (2) as

y(x+ h) ≈ y +
h

2
f +

h

2
(f + hfx + hfyf). (3)

Comparing the final term with (1) we can write

y(x+ h) ≈ y +
h

2
f +

h

2
f(x+ h, y + hf). (4)

This can be written as a sequence of steps, starting with yn ≈ y(xn) and with xn+1 = xn + h:

k1 = f(x, y)

k2 = f(x+ h, y + hk1)

yn+1 = yn +
h

2
(k1 + k2).

This is an example of a second-order Runge-Kutta formula, and is equal to a second-order Taylor
approximation, but without computing any of the derivatives of f . In general, an n-th order Runge-
Kutta formula has the form:

k1 = f(xn, yn)

k2 = f(x+ c2h, yn + a21hk1)

k3 = f(x+ c3h, yn + h(a31k1 + a32k2))

...
km = f(x+ cmh, yn + h(am1k1 + am2k2 + · · ·+ am,m−1km−1))

and then

yn+1 = yn + h(b1k1 + b2k2 + · · ·+ bmkm).

It is customary to write all the coefficients in a Butcher array:

0
c2 a21
c3 a31 a32
...
cm am1 am2 · · · am,m−1

b1 b2 · · · bm−1 bm

86

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

These particular Runge-Kutta methods are called explicit methods, where at stage i the value ki is
explicitly defined in terms of previously computed values. The above second order method could be
written as

0
1 1

1
2

1
2

A very popular fourth-order method (sometimes called “the Runge-Kutta method”) is given by the
array

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

2 Use of Computer Algebra Systems: third-order methods
Before we launch into the use of a CAS, consider a third-order system:

k1 = f(x, y)

k2 = f(x+ c2h, y + a21hk1)

k3 = f(x+ c3h, y + a31hk1 + a32hk2)

and

yn+1 = yn + h(b1k1 + b2k2 + b3k3)

and which is to be equivalent to the third-order Taylor polynomial

y(xn + h) ≈ y + hf +
h2

2
(fx + fyf) +

h3

6
(fxx + 2fxyf + fxfy + fyy(f)

2 + (fy)
2f).

In order to find appropriate coefficients, the expressions for each of the ki values need to be expanded
up to and including the second derivatives; thus:

k1 = f(x, y)

k2 = f(x, y) + h(c2fx + a21k1fy) +
h2

2
(c22fxx + 2c2a21k1fxy + (a32k1)

2fyy)

k3 = f(x, y) + h(c3fx + (a31k1 + a32k2)fy)

+
h2

2
(c22fxx + 2c2(a31k1 + a32k2)fxy + (a31k1 + a32k2)

2fyy)

Note that k3 above is expressed in terms of k2; this means that the expression for k2 must be substituted
into k3 wherever it occurs, so that the final expressions for each of the ki are written using only f and
its derivatives, and h.

87

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

To equate the Taylor polynomial with the Runge-Kutta values for yn+1, we must have

y + hf +
h2

2
(fx + fyf) +

h3

6
(fxx + 2fxyf + fxfy + fyy(f)

2 + (fy)
2f)

= y + h(b1k1 + b2k2 + b3k3)

or that

b1k1 + b2k2 + b3k3 = f +
h

2
(fx + fyf) +

h2

6
(fxx + 2fxyf + fxfy + fyy(f)

2 + (fy)
2f). (5)

We thus need to find values of all the unknown coefficients (the a, b and c values), for which

b1k1 + b2k2 + b3k3 − f − h

2
(fx + fyf)−

h2

6
(fxx + 2fxyf + fxfy + fyy(f)

2 + (fy)
2f) = 0.

Collecting all the terms together, and working through all the algebra to expand k2 and k3 fully, we
end up with

(
a232b3
2

+ a31a32b3 +
a231b3
2

+
a221b2
2

− 1

6

)
fyyh

2f 2 +

(
a21a32b3 −

1

6

)
f 2
yh

2f

+

(
a32b3c3 + a31b3c3 + a21b2c2 −

1

3

)
fxyh

2f

+

(
a32b3 + a31b3 + a21b2 −

1

2

)
fyhf + (b3 + b2 + b1 − 1) f

+

(
a32b3c2 −

1

6

)
fxfyh

2 +

(
b3c

2
3

2
+

b2c
2
2

2
− 1

6

)
fxxh

2

+

(
b3c3 + b2c2 −

1

2

)
fxh

= 0.

(6)

Once this has been done, the values we want are the solutions to the non-linear equations:

a232b3 + 2a31a32b3 + a231b3 + a221b2 = 1/3

a21a32b3 = 1/6

a32b3c3 + a31b3c3 + a21b2c2 = 1/3

a32b3 + a31b3 + a21b2 = 1/2

b3 + b2 + b1 = 1

a32b3c2 = 1/6

b3c
2
3 + b2c

2
2 = 1/3

b3c3 + b2c2 = 1/2

It can be seen—even without attempting to solve these equations—that the algebra involved is ex-
tremely involved, messy, and without any apparent order. Given the apparent lack of structure to

88

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

these equations, it is all the more remarkable that Butcher was able to relate these equations to a
different area of mathematics, and hence bring some order to the chaos.

Our approach, though, will be to simply create the equations from scratch, and solve them, using
a computer algebra system. Our choice will be the open-source Sage [10] to perform the algebraic
computations. However, much of the initial calculus computations will devolve to the open-source
system Maxima [7], which is the current descendant of the venerable system Macsyma; and which
has very powerful calculus and algebra functionality. As Sage includes Maxima within it, we can use
Maxima initially to create the derivatives and the functions, and use the algebraic power of Sage to
solve the equations. We will present our work with monospaced input and typeset output, similar to
the appearance of using Sage in a browser-based “notebook” [3] and with Maxima cells..

To start, we need to create a formal function f and its derivatives. In Sage, objects maintain their
types, so in a variable assignment such as “z = f.diff(x)”, assuming f to be a function previously
defined, the result z will be either a Sage object or a Maxima object depending on the type of f. We
thus start by introducing three Maxima variables:

x = maxima(’x’)
y = maxima(’y’)
f = maxima(’f’)

Now each of these variables will automatically have access to the Maxima sub-system, and so we can
create the derivatives. In order to prevent unnecessary high derivatives of y(x), we shall replace y′

with f as soon as it appears.

y.depends(x)
f.depends([x,y])
f1 = f.diff(x).subst("diff(y,x)=f")
f2 = f1.diff(x).subst("diff(y,x)=f")
f3 = f2.diff(x).subst("diff(y,x)=f")

Sage doesn’t automatically display the results of a variable assignment, but we can check out the first
two:

f1,f2

f

(
∂

∂ y
f

)
+

∂

∂ x
f,

f

(
f

(
∂2

∂ y2
f

)
+

∂2

∂ x ∂ y
f

)
+

∂

∂ y
f

(
f

(
∂

∂ y
f

)
+

∂

∂ x
f

)
+

∂2

∂ x2
f + f

(
∂2

∂ x ∂ y
f

)
In order to make the algebra more manageable, we shall subsitute each derivative with a variable
name, first introducing those variables into the namespace. Sage is based on the programming lan-
guage Python, in which any variable must be named before it can be used. These variables will accrue
their appropriate types later.

89

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

var(’h,F,Fx,Fy,Fxx,Fxy,Fyy,Fxxx,Fxxy,Fxyy,Fyyy,a21,\
a31,a32,a41,a42,a43,b1,b2,b3,b4,c2,c3,c4,’)
dsubs = " ’diff(f,x,3)=Fxxx, ’diff(f,x,2,y,1)=Fxxy,\

’diff(f,x,1,y,2)=Fxyy,’diff(f,y,3)=Fyyy,\
’diff(f,x,2)=Fxx, ’diff(f,y,2)=Fyy,\
’diff(f,x,1,y,1)=Fxy,’diff(f,x,1)=Fx,\
’diff(f,y,1)=Fy, f=F"

F1 = f1.subst(dsubs)
F2 = f2.subst(dsubs)
F3 = f3.subst(dsubs)

As before, their values can be checked:

F1, F2, F3

Fy F + Fx

F (Fyy F + Fxy) + Fy (Fy F + Fx) + Fxy F + Fxx

F (F (Fyyy F + Fxyy) + Fyy (Fy F + Fx) + Fxyy F + Fxxy)

+ Fy (F (Fyy F + Fxy) + Fy (Fy F + Fx) + Fxy F + Fxx)

+ 2 (Fy F + Fx) (Fyy F + Fxy) + Fxy (Fy F + Fx)

+ F (Fxyy F + Fxxy) + Fxxy F + Fxxx

Now we introduce the Taylor polynomial up to the third derivative (this is for a third-order method),
and this corresponds to the right hand side of equation (5):

T = F + h/2*F1 + h^2/6*F2; T

h2 (F (Fyy F + Fxy) + Fy (Fy F + Fx) + Fxy F + Fxx)

6
+

h (Fy F + Fx)

2
+ F

In order to compute the ki values, we need a Taylor series expansion up to the second derivative:

f(x+ a, y + b) = f(x, y) + afx + bfy +
1

2

(
a2fxx + 2abfxy + b2fyy

)
where the subscripts represent the usual partial derivatives. Given the above substitutions, we will
call this expansion Tay(a, b). Since we are at the moment dealing with Maxima variables, we will
define Tay as a Maxima function:

Tay = maxima.function(’a,b’,’F+Fx*a+Fy*b\
+(Fxx*a^2+2*Fxy*a*b+Fyy*b^2)/2’)

Since the ki values are nested, we do not want the powers of h increasing: we are only interested in
coefficients for which the powers of h are 2 or less. Maxima has a handy trick here:

maxima("tellrat(h^3)")
maxima("algebraic:true")

90

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

This means that for every rational expansion, all powers of h that are three or more will be set equal
to zero. Now we can create the ki values:

k1 = Tay(0, 0)
k2 = Tay(c2*h, a21*h*k1)
k3 = Tay(c3*h, h*a31*k1 + h*a32*k2)

(The expressions, certainly for k3, are too long to display). Now we can create the left hand side of
equation (5):

RK = b1*k1 + b2*k2 + b3*k3

The next step is to create the expression on the left hand side of equation (6); we can do this by
collecting all the terms involving F and its derivatives. The Maxima command “collectterms”
provides just this functionality.

d = (T-RK).ratexpand().collectterms(Fyy,Fxy,Fxx,Fy,Fx,F,h)

This expression is too long to print, but we can extract the coefficients from it, which are the equations
we want:

eqs = [xx.inpart(1) for xx in d.args()]
eqs [

−a32
2 b3
2

− a31 a32 b3 − a31
2 b3
2

− a21
2 b2
2

+
1

6
,

1

6
− a21 a32 b3 ,

− a32 b3 c3 − a31 b3 c3 − a21 b2 c2 +
1

3
, −a32 b3 − a31 b3 − a21 b2

+
1

2
, −b3 − b2 − b1 + 1,

1

6
− a32 b3 c2 ,−

b3 c3
2

2
− b2 c2

2

2
+

1

6
,−b3 c3 − b2 c2 +

1

2

]
Each expression in this list may be considered as the left hand side of an equation which will be set
equal to zero. These expressions are all Maxima objects, but to access the algebraic power of Sage,
they need to be lifted out of the Maxima sub-system. We will use the Sage “repr” command, which
produces a string representation of an object, and we will evaluate those strings into Sage expressions.

eqs2 = [sage_eval(repr(xx),locals=locals()) for xx in eqs]

In Sage an expression can be entered directly in the solve command, in which it is automatically
assumed to be an equation set equal to zero. These equations can be solved in terms of c2 and c3:

sols = solve(eqs2,[a21,a31,a32,b1,b2,b3])
sols

[[
a21 = c2, a31 =

3 (c22 − c2)c3 + c23
3 c22 − 2 c2

, a32 =
c2c3 − c23
3 c22 − 2 c2

, b1 =
3 (2 c2 − 1)c3 − 3 c2 + 2

6 c2c3
,

b2 = − 3 c3 − 2

6 (c22 − c2c3)
, b3 =

3 c2 − 2

6 (c2c3 − c23)

]]
These are standard expressions, and are found, for example, in Butcher [1]. In general, Sage solutions
are given as a list of lists. In our case there is only one solution, which can be isolated with

91

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

sols = sols[0]

given that in Sage lists are indexed starting at zero. Note that the first item tells us that a21 = c2.
Adding the next two items shows a similar relation for c3:

(sols[1] + sols[2]).simplify_rational()

a31 + a32 = c3

It can in fact be shown that for any Runge-Kutta method, each ck value is equal to the sum of the
corresponding aki values:

ck = ak1 + ak2 + · · · ak,k−1.

This is known as the row-sum condition, and may be assumed for any computation with Runge-Kutta
coefficients.

We can now find particular solutions by substituting values for c2 and c3 (such that the denomina-
tors are all non-zero, which means that c2 and c3 must be different), for example:

[xx.subs(c2=-1,c3=1) for xx in sols][
a21 = (−1) , a31 =

(
7

5

)
, a32 =

(
−2

5

)
, b1 =

(
2

3

)
, b2 =

(
− 1

12

)
, b3 =

(
5

12

)]
Two other substitutions are:

[xx.subs(c2=1/2,c3=1) for xx in sols][
a21 =

(
1

2

)
, a31 = (−1) , a32 = 2, b1 =

(
1

6

)
, b2 =

(
2

3

)
, b3 =

(
1

6

)]
[xx.subs(c2=1/2,c3=1) for xx in sols][

a21 =

(
1

3

)
, a31 = 0, a32 =

(
2

3

)
, b1 =

(
1

4

)
, b2 = 0, b3 =

(
3

4

)]
These last two can be written into Butcher arrays as follows:

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

,

0
1
3

1
3

2
3

0 2
3

1
3

0 3
4

and are known as Kutta’s third-order method and Heun’s third-order method respectively.

92

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

3 Fourth-order methods
Having set up the ground work, fourth-order methods can be found similarly; with suitable changes
to some of the entries to allow for the higher order. With each of f1, f2, f3, F1, F2, F3 as
before, the commands (given with no outputs) will be:

maxima("tellrat(h^4)")
T = F + h/2*F1 + h^2/6*F2 + h^3/24*F3
Tay = maxima.function(’a,b’,’F+Fx*a+Fy*b\

+(Fxx*a^2+2*Fxy*a*b+Fyy*b^2)/2\
+(Fxxx*a^3+3*Fxxy*a^2*b+3*Fxyy*a*b^2+Fyyy*b^3)/6’)

k1 = Tay(0, 0)
k2 = Tay(c2*h, a21*h*k1)
k3 = Tay(c3*h, h*a31*k1 + h*a32*k2)
k4 = Tay(c4*h, h*a41*k1 + h*a42*k2 + h*a43*k3)

RK = b1*k1 + b2*k2 + b3*k3 + b4*k4
d = (T-RK).ratexpand()\

.collectterms(Fyyy,Fxyy,Fxxy,Fxxx,Fyy,Fxy,Fxx,Fy,Fx,F,h)
eqs = [xx.inpart(1) for xx in d.args()]

At this stage, with no simplification, we will have a list of 19 equations. Before attempting to simplify
the equations, we first introduce the row-sum condition:

eqs2 = [xx.subst("a21=c2,a31=c3-a32,a41=c4-a42-a43").expand()\
.collectterms(b1,b2,b3,b4) for xx in eqs]

and transform the set of equations out of Maxima and into Sage:

eqss = [sage_eval(repr(xx),locals=locals()) for xx in eqs2]

Now we can create a polynomial ring in which all the computations will be done, and in the polyno-
mial ring compute the reduced Gröbner basis of the ideal generated by the equations:

R = PolynomialRing(QQ,’a21,a31,a32,a41,a42,a43,b1,b2,b3,b4,c2,
...: c3,c4’,order=’lex’)
Id = R.ideal(eqss)
ib = Id.interreduced_basis()

The “interreduced_basis” command simplifies the 19 equations obtained from the initial com-
putations to a set of eight equations, which is a minimal Gröbner basis in the formal sense that no
smaller set can generate the initial polynomial ideal. See for example [11] for an elementary and
readable account of Gröbner bases and reduced Gröbner bases. The eight equations thus obtained are

93

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

as follows:

a32a43b4c2 −
1

24
(7.1)

a32b3c2 + a42b4c2 + a43b4c3 −
1

6
(7.2)

a42b4c2c3 − a42b4c2c4 + a43b4c
2
3 − a43b4c3c4 −

1

6
c3 +

1

8
(7.3)

a43b4c2c3 − a43b4c
2
3 −

1

6
c2 +

1

12
(7.4)

b1 + b2 + b3 + b4 − 1 (7.5)

b2c2 + b3c3 + b4c4 −
1

2
(7.6)

b3c2c3 − b3c
2
3 + b4c2c4 − b4c

2
4 −

1

2
c2 +

1

3
(7.7)

b4c2c3c4 − b4c2c
2
4 − b4c3c

2
4 + b4c

3
4 −

1

2
c2c3 +

1

3
c2 +

1

3
c3 −

1

4
(7.8)

As we have seen previously, we may consider each of these expressions as the left hand sides of
equations set equal to zero. And this new system of equations can be easily solved in terms of ci. We
first note that c4 = 1; although this can be shown analytically, we can easily demonstrate it using our
reduced Gröbner basis:

(ib*R).reduce(c4-1)

0

The bi values can now be obtained by noting that the last four equations (7.5), (7.6), (7.7), (7.8) are
linear in bi:

bsols = solve([ib[i].subs(c4=1) for i in [4,5,6,7]],[b1,b2,b3,b4],\
solution_dict=True)[0]

bsols = {xx: factor(yy) for xx, yy in bsols.items()}

{
b2 :

2 c3 − 1

12 (c2 − c3)(c2 − 1)c2
, b1 :

6 c2c3 − 2 c2 − 2 c3 + 1

12 c2c3
,

b4 :
6 c2c3 − 4 c2 − 4 c3 + 3

12 (c2 − 1)(c3 − 1)
, b3 : −

2 c2 − 1

12 (c2 − c3)(c3 − 1)c3

}
(Note that in Sage lists the indices start at 0, so that our equation numbers (7.5), (7.6), (7.7), (7.8)
correspond to Sage list indices 4, 5, 6, 7.)

These are standard results [1]. From these we can use the equations (7.2, (7.3) and (7.4) to
compute the aij values:

asols = solve([SR(ib[i]).subs(c4=1).subs(bsols) for i in [1,2,3]],\
[a32,a42,a43],solution_dict=True)[0]

asols = {xx: factor(yy) for xx, yy in asols.items()}

94

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

{
a43 :

(2 c2 − 1)(c2 − 1)(c3 − 1)

(6 c2c3 − 4 c2 − 4 c3 + 3)(c2 − c3)c3
,

a42 : −
(4 c23 − c2 − 5 c3 + 2)(c2 − 1)

2 (6 c2c3 − 4 c2 − 4 c3 + 3)(c2 − c3)c2
, a32 :

(c2 − c3)c3
2 (2 c2 − 1)c2

}
These values satisfy the first equation (7.1):

(asols[a32]*asols[a43]*bsols[b4]*c2).rational_simplify()

1

24

Note that because of the factor c2 − c3 in the denominators of some of these expressions, we cannot
substitute equal values for c2 and c3. In order to develop a fourth-order method for which c2 = c3 we
need to go back a few steps:

var(’u’)
eqss = [sage_eval(repr(xx),locals=locals()).subs(c2=u,c3=u,c4=1)
...: for xx in eqs2]
R.<a21,a31,a32,a41,a42,a43,b1,b2,b3,b4,u> = PolynomialRing(QQ)
Id = R.ideal(eqss)
ib = Id.interreduced_basis(); ib

[
a32a43 −

1

2
, a32b3 −

1

6
, a42 + a43 − 1, b1 −

1

6
, b2 + b3 −

2

3
, b4 −

1

6
, u− 1

2

]
These can be solved to produce:

u =
1

2
, b1 =

1

6
, b2 = r1, b3 =

2

3
− r1, b4 =

1

6
, a32 =

1

2(2− 3r1)
,

a42 = 3r1 − 1, a43 = 2− 3r1.

These values can be written into the following Butcher array:

0
1
2

1
2

1
2

0 1
2

1 0 3r1 − 1 2− 3r1
1
6

r1
2
3
− r1

1
6

Putting r1 = 1/3 produces the classic Runge-Kutta fourth-order method.

95

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

4 Use of autonomy
Much of the computations in the previous sections can be simplified by noting that we do not in
fact need to include the ci values in any equations list, as their values can be determined from the
aij values. Since ci only appear in the computation of ki, all the computations can be simplified by
considering only differential equations for the form

y′ = f(y)

in which f does not depend explicitly on x; such differential equations are said to be autonomous.
This leads to greatly simplified forms for the higher derivatives of f :

f.depends(y)

Create fi and Fi as before, but note the values of Fi:

F1, F2, F3(
Fy F, Fyy F 2 + Fy2 F, Fyyy F 3 + 4Fy Fyy F 2 + Fy3 F

)
Since we need not consider any partial derivatives of f which include x, the following commands can
be used:

maxima("tellrat(h^4)")
T = F + h/2*F1 + h^2/6*F2 + h^3/24*F3
Tay = maxima.function(’a,b’,’F+Fy*b+Fyy*b^2/2+Fyyy*b^3/6’)
k1 = Tay(0, 0)
k2 = Tay(0, a21*h*k1)
k3 = Tay(0, h*a31*k1 + h*a32*k2)
k4 = Tay(0, h*a41*k1 + h*a42*k2 + h*a43*k3)

Note that we need to include an extra dummy variable in the “Tay” function; the systems in their
current forms prevent a Maxima function of one variable being used in this way. The next few
commands are similar to those above.

RK = b1*k1 + b2*k2 + b3*k3 + b4*k4
d = (T-RK).ratexpand().collectterms(Fyyy,Fyy,Fy,F,h)
eqs = [xx.inpart(1) for xx in d.args()]
eqss = [sage_eval(repr(xx),locals=locals()) for xx in eqs]

The equations are still quite long and complicated; as before they can be simplified by introducing
the row-sum conditions, and putting c4 = 1:

eqs2 = [xx.subs(a31=c3-a32,a41=1-a42-a43).expand() for xx in eqss]

to produce:

96

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

− 1

6
b2c

3
2 −

1

6
b3c

3
3 −

1

6
b4c

3
4 +

1

24

− 1

2
a32b3c

2
2 −

1

2
a42b4c

2
2 − a32b3c2c3 −

1

2
a43b4c

2
3 − a42b4c2c4 − a43b4c3c4 +

1

6

− 1

2
b2c

2
2 −

1

2
b3c

2
3 −

1

2
b4c

2
4 +

1

6

− a32a43b4c2 +
1

24

− a32b3c2 − a42b4c2 − a43b4c3 +
1

6

− b2c2 − b3c3 − b4c4 +
1

2
− b1 − b2 − b3 − b4 + 1

These expressions are not quite the same as the expressions (7.1) to (7.8) from the previous section,
but they can be solved similarly as equations set equal to zero:

bsols = solve([eqs2[i] for i in [0,2,5,6]],[b1,b2,b3,b4],\
solution_dict=True)[0]

asols = solve([eqs2[i].subs(bsols) for i in [1,3,4]],[a32,a42,a43],\
solution_dict=True)[1]

to produce the same results as before.
For this autonomous approach, there has been no need to simplify a large set of nineteen equations

to a smaller set by involving the machinery of Gröbner bases; the equation set was optimally small at
the start.

To solve these equations with c2 = c3, we need to be a bit careful; the attempt

var(’u’)
eqs2 = [xx.subs(a21=u,a31=u-a32,a41=1-a42-a43).expand()
...: for xx in eqss]
bsols = solve([eqs2[i] for i in [0,2,5,6]],[b1,b2,b3,b4],
...: solution_dict=True)

will not work: as b2 and b3 have the same coefficients in all the equations, the determinant of the
matrix of coefficients is zero. So we leave b2 out:

bsols = solve([eqs2[i] for i in [0,2,6]],[b1,b3,b4],\
....: solution_dict=True)[0]
asols = solve([eqs2[i].subs(bsols) for i in [1,3,4]],[a32,a42,a43],\
....: solution_dict=True)[0]

The results will be expressed in terms of the parameters b2 and u. Substituting b2 = 1/3 and u = 1/2
will produce the standard fourth-order method.

97

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

5 Embedded formulas
Many applications now use embedded Runge-Kutta methods, in which two methods share the same
coefficients. Generally the order of the methods differs by one, so we might have a fifth order method,
from which the coefficients can be used to build a fourth-order method. Then the differences between
the results of these methods can be used to adjust the step size h for the next iteration.

Methods of order 4(3) and the theory behind them are well known [1, 5], but we can show that it
is very easy to construct such a method. Starting with Kutta’s 3/8 method, we need to find coefficients
b̂1, b̂2, b̂3, b̂4, b̂5 so that with the extra stage

k5 = f(xn + c5h, h(b1k1 + b2k2 + b3k3 + b4k4))

the value of yn+1 obtained with

yn+1 = yn + h(b̂1k1 + b̂2k2 + b̂3k3 + b̂4k4 + b̂5k5)

will be accurate to order three.
This is easily done, assuming the autonomous approach. We enter the fourth-order values, and for

simplicity we use si in place of b̂i.

a21,a31,a32,a41,a42,a43 = 1/3,-1/3,1,1,-1,1
b1,b2,b3,b4 = 1/8,3/8,3/8,1/8
var(’s1,s2,s3,s4,s5’)

We set up the third-order conditions as previously, but this time with five stages:

T = F + h/2*F1 + h^2/6*F2
maxima("tellrat(h^3)")
maxima("algebraic:true")
Tay = maxima.function(’a,b’,’F+Fy*b+Fyy*b^2/2’)

k1 = Tay(0, 0)
k2 = Tay(0, h*a21*k1)
k3 = Tay(0, h*a31*k1 + h*a32*k2)
k4 = Tay(0, h*a41*k1 + h*a42*k2 + h*a43*k3)
k5 = Tay(0, h*b1*k1 + h*b2*k2 + h*b3*k3 + h*b4*k4)
RK = s1*k1 + s2*k2 + s3*k3 + s4*k4 + s5*k5

Now we extract the coefficients of T-RK as equations to be solved.

d = (T-RK).ratexpand().collectterms(Fyy,Fy,F,h)
eqs = [xx.subst(’h=1,F=1,Fy=1,Fyy=1’) for xx in d.args()]
eqs2 = [sage_eval(repr(xx),locals=locals()) for xx in eqs]

These equations are easily solved:

solve(eqs2,[s1,s2,s3,s4,s5])

98

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

[[
s1 = −1

4
r1 +

1

8
, s2 =

3

4
r1 +

3

8
, s3 = −3

4
r1 +

3

8
, s4 = −3

4
r1 +

1

8
, s5 = r1

]]
and the extra parameter can be set to any value we like, for example r1 = 1.

[xx.subs(r1=1) for xx in sols[0]][
s1 =

(
−1

8

)
, s2 =

(
9

8

)
, s3 =

(
−3

8

)
, s4 =

(
−5

8

)
, s5 = 1

]
This values can be written into a Butcher array as follows:

0
1
3

1
3

2
3

−1
3

1

1 1 −1 1
1
8

3
8

3
8

1
8

−1
8

9
8

−3
8

−5
8

1

for an embedded 4(3) method. If we choose the parameter r1 so that s4 = 0; that is r1 = 1/6, we
obtain the following values:[

s1 =

(
1

12

)
, s2 =

(
1

2

)
, s3 =

(
1

4

)
, s4 = 0, s5 =

(
1

6

)]

6 Conclusions
The literature on Runge-Kutta methods and associated mathematics is vast, Butcher [1] lists many
hundreds of references. However, much of this material is directed at the specialist researcher. The
various articles which use computer algebra systems in an attempt to sidestep the specialist material
have tended to use commercial systems, which puts the material out of bounds for people who don’t
use (or can’t afford) those systems. As long ago as 1993, Joachim Neubüser, the creator of the GAP
package for group theory (and which is part of Sage) [8] deplored the fact that mathematical theorems
are open to everybody to use, but mathematics using a computer system was not, unless that system
was open-source. Our article has attempted to allow the general non-specialist reader to experiment
and explore some of the basic properties of Runge-Kutta methods, using only open-source systems.

Since the computer algebra system handles all the algebraic hard work, the difficulty is mainly
setting up the system at the beginning, and eliminating unnecessary higher derivatives when they are
not needed. The level of calculus and algebra is not in fact particularly difficult—what is difficult
is the complexity of the expressions, and the huge equations which derive from them. Using a CAS
to do the “heavy lifting” means that much of this work falls within the purview of undergraduate
material, and indeed could make a good undergraduate project, or an exploration for the interested
non-specialist.

99

The Electronic Journal of Mathematics and Technology, Volume 10, Number 2, ISSN 1933-2823

References
[1] John C. Butcher. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons,

2008.

[2] John C. Butcher. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and
General Linear Methods. Wiley-Interscience, 1987.

[3] Burçin Eröcal and William A. Stein. “The Sage project: unifying free mathematical software to
create a viable alternative to Magma, Maple, Mathematica and MATLAB”. In: Mathematical
Software–ICMS 2010. Springer, 2010, pp. 12–27.

[4] Walter Gander and Dominik Gruntz. “Derivation of numerical methods using computer alge-
bra”. In: SIAM review 41.3 (1999), pp. 577–593.

[5] Ernst Hairer, Syvert P. Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equations
I: Non-Stiff Systems. Springer-Verlag, Berlin, 1987.

[6] John D. Lambert. Numerical Methods for Ordinary Differential Systems: the Initial Value Prob-
lem. John Wiley & Sons, Inc., 1991.

[7] Maxima. Maxima, a Computer Algebra System. Version 5.30.0. http://maxima.sourceforge.
net/, 2013.

[8] Joachim Neubüser. “An invitation to computational group theory”. In: Groups’ 93–Galway/St.
Andrews, volume 212 of London Math. Soc. Lecture Note Ser. Citeseer. Aug. 1995, pp. 457–
475.

[9] Antony Ralston and Philip Rabinowitz. A First Course in Numerical Analysis. Dover Publica-
tions, 1965.

[10] William A. Stein et al. Sage Mathematics Software (Version 6.0). http://www.sagemath.
org. The Sage Development Team. 2014.

[11] Bernd Sturmfels. “What is a Gröbner basis?” In: Notices of the AMS 52.10 (Nov. 2005), pp. 2–
3.

100

http://maxima.sourceforge.net/
http://maxima.sourceforge.net/
http://www.sagemath.org
http://www.sagemath.org

	Introduction
	Use of Computer Algebra Systems: third-order methods
	Fourth-order methods
	Use of autonomy
	Embedded formulas
	Conclusions

